
Algorithm-Based Fault Tolerance at Scale
Hayden Estes, Dr. Joshua Dennis Booth

Department of Computer Science

Overview

Results

Impact

Acknowledgments

The rising need for fault tolerant systems is higher than ever due to the

introduction of exascale computing. A system's fault tolerance is defined by

its hardware, algorithms, and data types. Modern heterogeneous systems

are composed of a large number of processors that support a variety of

these data types. Understanding these data types' roles within an algorithm

is vital to measuring fault tolerance. Exploring various floating-point formats

shows how they can impact fault tolerance methods used for the sparse

conjugate gradient algorithm (CG). We have determined that the modern

Brain Floating Point Format (BFloat16) used in many Google tensor

processing units (TPUs) can not be applied successfully, while IEEE754

32-bit floating point format (IEEE 32-bit) is utilized and optimized in GPUs

(e.g. NVIDIA Tensor Core) can be applied successfully. These findings will

make long-running scientific codes that use CG as a solver method able to

ensure accuracy with minimal increased run time.

Continuing the work of [1], we decided to explore how limiting levels of

precision may affect the efficiency of fault tolerance. We implemented our

own preconditioned CG algorithm so that we had full control over the

precision during every mathematical operation. Using this implementation,

we supplied a set of SuiteSparse matrices and applied the data types

IEEE 64-bit, IEEE 32-bit, and BFloat16. After confirming our data was

correct through duplication and comparing the vectors of the previous

work, we were able to analyze our results for any data types' benefits.

Our results make CG more fault tolerance feasible due to the higher

duplication efficiency with the IEEE 32-bit data type, in particular allowing

GPUs to be used. CG algorithms are used to solve sparse systems of

linear equations, so they are included in many other applications

represented by partial differential equations. All long-running programs

utilizing CG algorithms such as climate, electrical circuit, and robotic

manipulator simulations can be improved using our findings.

Thank you to the National Science Foundation for funding this project through NSF Grant 2135310, the Extreme

Science and Engineering Discovery Environment for access to high performance hardware. The RCEU program

is sponsored in part by the UAH Office of the President, Office of the Provost, Office of the Vice President for

Research and Economic Development, The Dean of the College of Science, the Dean of the College of

Engineering, and the Alabama Space Grant Consortium.

Research and Creative Experience for

Undergraduates Program (RCEU)

Summer 2022

1. Manu Shantharam, Sowmyalatha Srinivasmurthy, and Padma Raghavan. 2012. Fault tolerant preconditioned conjugate gradient for sparse linear system solution. In Proceedings of the

26th ACM international conference on Supercomputing (ICS '12). Association for Computing Machinery, New York, NY, USA, 69–78.

2. Berrocal, Eduardo et al. “Lightweight Silent Data Corruption Detection Based on Runtime Data Analysis for HPC Applications.” Proceedings of the 24th International Symposium on High-

Performance Parallel and Distributed Computing. ACM, 2015. 275–278. Web.

3. Cappello, Franck et al. “Toward Exascale Resilience.” The international journal of high performance computing applications 23.4 (2009): 374–388. Web.

4. Sun, Hongyang et al. “Selective Protection for Sparse Iterative Solvers to Reduce the Resilience Overhead.” 2020 IEEE 32nd International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD). IEEE, 2020. 141–148. Web.

Key References

Figure 2: Sparse Matrices with their respective size, density,

and condition values

Figure 1: PCG iteration counts with varying precisions

*Note: The iterations have an artificial maximum of 8000

1. What are faults?

A fault is when a computer performs an operation incorrectly for various

reasons.

a. Hard-faults: Replicable physical faults in computer hardware.

b. Soft-fault: transitive temporary faults. (e.g., alpha particle,

packing pollution, cosmic radiation, etc)

1. How frequent are faults?

The frequency of faults is directly correlated to the complexity of the

system.

a. Faults on an average computer are reasonably rare due to

low complexity.

b. High-performance systems have several millions of

processors which heavily increases the frequency of faults.

3. How can a system be more fault tolerant?

Faults are tolerated through use of detection, duplication, and

correction.

A. Detection involves checking the results in real time based on

algorithms or generalized methods regardless of the algorithm.

(e.g. duplicating calculations)

B. Correction involves accepting the majority vote, continuing from

a checkpoint, etc.

Ultimately, we determined that the CG iterations, memory overhead, and

overall precision are the key aspects of these data types. Figures 1 and 2

below show characterizing results of our preconditioned CG algorithm.

IEEE 32 vs BFloat16

➔ More precise decimals

➔ Large iteration decrease

➔ More memory overhead

➔ Less precise decimals

➔ Large iteration increase

➔ Less memory overhead

➔ Less precise data type

➔ Minimal iteration increase

➔ Less memory overhead

➔ More precise data type

➔ Large iteration increase

➔ Less memory overhead

1. IEEE 32-bit precision is a beneficial alternative to IEEE 64-bit for CG

algorithms while still causing a minimal increase in iteration count due

to the efficiency increase in fault tolerance methods.

Pictured: Frontier, the world's first exascale supercomputer.

Frontier will experience several faults every day due to its size and complexity,

IEEE 32 vs IEEE64

Methodology

Background

2. BFloat16 is not a viable alternative to IEEE 64-bit or IEEE 32-bit for CG

algorithms due to the large increase in iteration counts compared to the

fault tolerance efficiency

