
Introduction

Discussion and ContinuationResults

References

Methodology
This work presents an overhead analysis for the Sparse Preconditioned

Conjugate Gradient (PCG) fault tolerance algorithm that utilizes many-core and

GPU systems. The work analyzes the overhead selectively using GPUs for

duplicate calculation, where the duplication is based on the numerical

properties of the sparse matrix. Implementing fault-checking methods from [1]

and [2], we rigorously test this approach on real hardware to ensure the

reliability and accuracy of linear system solutions. By leveraging existing

fault-checking techniques, we validate calculations and address potential

numerical instabilities or precision-related issues during iterative solving.

Through extensive experimentation on real hardware, we demonstrate the

effectiveness of the conjugate gradient algorithm in providing accurate and

reliable solutions for large linear systems.

Simultaneous Evaluation of Mindful Fault Checking Across the CPU and GPU

● We developed dual versions of the PCG algorithm in C:
 one with custom math functions designed for the CPU, and
 another with GPU acceleration using cuBLAS and cuSPARSE.

● We ran both of these implementations parallel 100 times for
each matrix. This test was run with error injections to the p
vector as described in [2] with no protection, full protection,
and selective protection.

All tests were run on an Ubuntu 20.04.5 x86_64 system with an Intel Xeon Silver
4210R and NVIDIA Quadro RTX 4000.

Hayden Estes, Dr. Joshua Booth University of Alabama in Huntsville

● The Preconditioned Conjugate Gradient algorithm (PCG) is an iterative solver

for x in Ax=b. Many studies and simulations use PCG, such as computational

physics, quantum mechanics, and data science.

[1] H. Sun, A. Gainaru, M. Shantharam and P. Raghavan, "Selective Protection for
Sparse Iterative Solvers to Reduce the Resilience Overhead," 2020 IEEE 32nd
International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), Porto, Portugal, 2020, pp. 141-148, doi:
10.1109/SBAC-PAD49847.2020.00029.

[2] Manu Shantharam, Sowmyalatha Srinivasmurthy, and Padma Raghavan. 2012.
Fault tolerant preconditioned conjugate gradient for sparse linear system solution. In
Proceedings of the 26th ACM international conference on Supercomputing (ICS '12).
Association for Computing Machinery, New York, NY, USA, 69–78.
https://doi.org/10.1145/2304576.2304588

Figure 3.

Reverse Cuthill–McKee (RCM) and
incomplete Cholesky factorization (ICHOL)
Creating matrix A and the preconditioner
respectively.

Figure 4.

Flowchart of our framework

Figure 2.

The S_ABFT method for SpMV as described in [1].

● Selectively protecting the critical SpMV of PCG,

A*p=q, is a sufficient check as all faults will

eventually propagate through vector p [2].

● The selective protection method strategically

focuses on monitoring the maximum k elements

of the row 2-norms of matrices, ensuring

accuracy in the CG algorithm. [1]

NSF Grant: Award Abstract 2135310, Collaborative Research: SHF: Small: Learning Fault Tolerance at Scale

● The matrices’ row 2-norms are utilized to identify values in the computation

that are particularly sensitive to numerical faults. Normally overhead is spent

to make duplicate runs for these values. Here, we analyze the overhead costs

if duplicated runs are done on GPU while the main runs are done on CPU. [1]

Figure 1.
Our selection of sparse matrices.

Figure 6

Scatter plots representing the correlation between row 2-norm and slowdown.

Figure 5.

Bar graphs showing average wall times for each matrix, with and without fault protection.

Background

I. The methods presented in [1] and [2] can be accurately represented outside of
a simulation.

II. Our frameworks dual CPU-GPU computation is able to reduce idling hardware.
III. Our fault tolerance methods accurately detect, correct, and reduce

computation time when presented with faults.

Optimizing fault tolerance and memory transfers in the PCG algorithm for dual
CPU-GPU Computation, and Selective Protection enables efficient large-scale
PCG on otherwise idle CPUs, enhancing supercomputer compute capacity.

We see opportunities to continue this work with mixed precision, determining k
values from sampling tests, custom CUDA kernels, and energy saving measuring.

