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This work presents an overhead analysis for the Sparse Preconditioned 

Conjugate Gradient (PCG) fault tolerance algorithm that utilizes many-core and 

GPU systems. The work analyzes the overhead selectively using GPUs for 

duplicate calculation, where the duplication is based on the numerical 

properties of the sparse matrix. Implementing fault-checking methods from [1] 

and [2], we rigorously test this approach on real hardware to ensure the 

reliability and accuracy of linear system solutions. By leveraging existing 

fault-checking techniques, we validate calculations and address potential 

numerical instabilities or precision-related issues during iterative solving. 

Through extensive experimentation on real hardware, we demonstrate the 

effectiveness of the conjugate gradient algorithm in providing accurate and 

reliable solutions for large linear systems.

Simultaneous Evaluation of Mindful Fault Checking Across the CPU and GPU 

● We developed dual versions of the PCG algorithm in C: 
  one with custom math functions designed for the CPU, and
  another with GPU acceleration using cuBLAS and cuSPARSE. 

● We ran both of these implementations parallel 100 times for 
each matrix. This test was run with error injections to the p 
vector as described in [2] with no protection, full protection, 
and selective protection.

All tests were run on an Ubuntu 20.04.5 x86_64 system with an Intel Xeon Silver 
4210R and NVIDIA Quadro RTX 4000.
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● The Preconditioned Conjugate Gradient algorithm (PCG) is an iterative solver 

for x in Ax=b. Many studies and simulations use PCG, such as computational 

physics, quantum mechanics, and data science.
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Reverse Cuthill–McKee (RCM) and
incomplete Cholesky factorization (ICHOL) 
Creating matrix A and the preconditioner 
respectively.
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Flowchart of our framework
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The S_ABFT method for SpMV as described in [1].

● Selectively protecting the critical SpMV of PCG, 

A*p=q, is a sufficient check as all faults will 

eventually propagate through vector p [2]. 

● The selective protection method strategically 

focuses on monitoring the maximum k elements 

of the row 2-norms of matrices, ensuring 

accuracy in the CG algorithm. [1]
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● The matrices’ row 2-norms are utilized to identify values in the computation 

that are particularly sensitive to numerical faults.  Normally overhead is spent 

to make duplicate runs for these values. Here, we analyze the overhead costs 

if duplicated runs are done on GPU while the main runs are done on CPU. [1]
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Our selection of sparse matrices.
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Scatter plots representing the correlation between row 2-norm and slowdown.
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Bar graphs showing average wall times for each matrix, with and without fault protection.

Background

I. The methods presented in [1] and [2] can be accurately represented outside of 
a simulation.

II. Our frameworks dual CPU-GPU computation is able to reduce idling hardware.
III. Our fault tolerance methods accurately detect, correct, and reduce 

computation time when presented with faults.

Optimizing fault tolerance and memory transfers in the PCG algorithm for dual 
CPU-GPU Computation, and Selective Protection enables efficient large-scale 
PCG on otherwise idle CPUs, enhancing supercomputer compute capacity.

We see opportunities to continue this work with mixed precision, determining k 
values from sampling tests, custom CUDA kernels, and energy saving measuring.


