Simultaneous Evaluation of Mindful Fault Checking Across the CPU and GPU

Introduction

This work presents an overhead analysis for the Sparse Preconditioned Conjugate Gradient (PCG) fault tolerance algorithm that utilizes many-core and GPU systems. The work analyzes the overhead selectively using GPUs for duplicate calculation, where the duplication is based on the numerical properties of the sparse matrix. Implementing fault-checking methods from [1] and [2], we rigorously test this approach on real hardware to ensure the reliability and accuracy of linear system solutions. By leveraging existing fault-checking techniques, we validate calculations and address potential numerical instabilities or precision-related issues during iterative solving. Through extensive experimentation on real hardware, we demonstrate the effectiveness of the conjugate gradient algorithm in providing accurate and reliable solutions for large linear systems.

Background

- The Preconditioned Conjugate Gradient algorithm (PCG) is an iterative solver for x in Ax=b. Many studies and simulations use PCG, such as computational physics, quantum mechanics, and data science.
- The matrices' row 2-norms are utilized to identify values in the computation that are particularly sensitive to numerical faults. Normally overhead is spent to make duplicate runs for these values. Here, we analyze the overhead costs if duplicated runs are done on GPU while the main runs are done on CPU. [1]
- Selectively protecting the critical SpMV of PCG, **A*p=q**, is a sufficient check as all faults will eventually propagate through vector p [2].
- The selective protection method strategically focuses on monitoring the maximum k elements $\frac{1}{15}$ of the row 2-norms of matrices, ensuring accuracy in the CG algorithm. [1]

Hayden Estes, Dr. Joshua Booth University of Alabama in Huntsville

Id Matrix	N	nnz	Density
1t2dah_e	11445	176117	0.13 %
2 Bcsstk 18	11948	149090	0.1 %
3 cbuckle	13681	676515	0.36 %
4 Pres Poisso	14822	715804	0.33 %
5gyro_m	17361	340431	0.11 %
6nd6k	18000	6897316	2.1 %
7 bodyy5	18589	128853	0.037 %
8raefsky4	19779	1316789	0.34 %
9 Trefethen_2	20000	554466	0.14 %
10 msc23052	23052	1142686	0.22 %
11bcsstk36	23052	1143140	0.22 %
12 wathen 100	30401	471601	0.051 %
13vanbody	47072	2329056	0.11 %
14 cvxbqp1	50000	349968	0.014 %
15 ct20 stif	52329	2600295	0.095 %
16 thermal 1	82654	574458	0.0084 %
17 m_tl	97578	9753570	0.1 %
182cubes_sph	101492	1647264	0.016 %
19G2_circuit	150102	726674	0.0032 %
20 pwtk	217918	11524432	0.024 %

https://doi.org/10.1145/2304576.2304588

NSF Grant: Award Abstract 2135310, Collaborative Research: SHF: Small: Learning Fault Tolerance at Scale