%Slmultcmeous Evaluation of Mindful Fault Checking Across the CPU and GPU /7.,

THE UNIVERSITY OF
ALABAMA IN HUNTSVILLE

Hayden Estes, Dr. Joshua Booth University of Alabama in Huntsville

Introduction Methodology " —
. . . : : | e e Figure 3.
, , o e We developed dual versions of the PCG algorithm in C: d_Matrix e L L ; .
This work presents an overhead analysis for the Sparse Preconditioned n e decianed for the CPU. and Liodsh e | 11445 176117 0.13% o 15 |- Reverse Cuthill-MoKee (RCM) and
onhe with custom math tunctions designed Tor the ,an 3cbuckl 13681 676515 0.36 % incomplete Cholesky factorization (ICHOL)
Conjugate Gradient (PCG) fault tolerance algorithm that utilizes many-core and . . . > tPres Paisse 14822 715804 10.33 % ; ; N creating malrix A and the preconditioner
another with GPU acceleration using cuBLAS and cuSPARSE. Sgyro_m 17361 a4 O41Y% respectively. %
GPU systems. The work analyzes the overhead selectively using GPUs for 7bodyy5 18589 128853 0.037 % c - . I, ! .
8raefsky4 19779 1316789 0.34 % . ’ I T N Start Batch of Start Batch of
. O Trefethen 2 20000 554466 0.14 % Matrices on CPU Matrices
dUplICate CaICUIathn, Where the dUplICathn 1S based on the numerlCal o We ran bOth Of these ImplementathnS para"el ’IOD tlmes for 1(]?rbncsscszt§ggz ggggg 1135?38 ggggﬁ) v N within a new thread On the GPU
properties of the sparse matrix. Implementing fault-checking methods from [1] each matrix. This test was run with error injections to the p o e e T e ' - L 2 I N I
)) V r ri in 2 Wi h n r i n f II r i n 14CVqup1 50000 349968 0.014 % A CheCksum Vector { — C | | = W i . .
and [2], we rigorously test this approach on real hardware to ensure the ector as described in [2] with no protection, full protection, 15ct20sitif 52329 2600295 0.095 % [| 0 sum| | | | |
and selective protection. poriermall | 82552 s orh r | N P .
reliability and accuracy of linear system solutions. By leveraging existing 182cubes_sph 101492 1647264 0.016 % b
19G2_circuit =~ 150102 726674 0.0032 % Figure 2 B ‘N N |
fault-checkin hni we vali lculations an r ntial . . =P A e 7 W 2R - Figure 4.
ault-checking techniques, we validate calculations and address potentia Z\g;(e)ths vgelileVrIg:;Aon andUbLéI;_t)Lé jgb%4.5x86_64 system with an Intel Xeon Silver Figuro 1 The S ABET method for SoMV as desaribed in 1] ., ..
. : cpes . - . . : : : an yadro , ' ces.
numerical instabilities or precision-related issues during iterative solving. 0 our selection of sparse matrices
Through extensive experimentation on real hardware, we demonstrate the - - - -
Results Discussion and Continuation
effectiveness of the conjugate gradient algorithm in providing accurate and N | e
| | | | Average Timings - No Protection - e e T . The methods presented in [1] and [2] can be accurately represented outside of
reliable solutions for large linear systems. | W= CPU - PCG Compute Time | mmm CPU - PCG Compute Time . .
| CPU - Fault Checking Time 10> CPU - Fault Checking Time a simulation.
GPU - PCG C Ti | Il GPU-PCGC te Ti . . o gme
1o | NP Moy Toar'Tine | S P - Mesary Trarmter T I. Our frameworks dual CPU-GPU computation is able to reduce idling hardware.
] 5
Backg round ; i 1. Our fault tolerance methods accurately detect, correct, and reduce
§ - E computation time when presented with faults.
e The Preconditioned Conjugate Gradient algorithm (PCG) is an iterative solver 5 10° >
for x in Ax=b. Many studies and simulations use PCG, such as computational A 10°: Optimizing fault tolerance and memory transfers in the PCG algorithm for dual
| PCG on otherwise idle CPUs, enhancing supercomputer compute capacity.
e The matrices’ row 2-norms are utilized to identify values in the computation
: " : . N We see opportunities to continue this work with mixed precision, determining k
that are particularly sensitive to numerical faults. Normally overhead is spent & o PP | P 3 g
| < & values from sampling tests, custom CUDA kernels, and energy saving measuring.
to make duplicate runs for these values. Here, we analyze the overhead costs . . Matrix
Figure 5. Matrix
if duplicated runs are done on GPU while the main runs are done on CPU. [1] Bar graphs showing average wall times for each matrix, with and without fault protection.
® Se'ective'y protecting the critical SpMV of PCG' ‘ 2cubes sphere row 2-norm and slowdown correlation G2 circuit row 2-norm and slowdown correlation Pres_Poisson row 2-norm and slowdown correlation wathenl00 row 2-norm and slowdown correlation Refe re n Ces
. . . ' o Data Points ¢ 201 e Data Points i .o/ © Data Points : o 354 e Data Points 0.. .) . .
A*p=q, IS a sufficient check as all faults will 800 - Polynomial Degree 2 ° Polynomial Degree 2 Polynomial Degree 2 ° Polynomial Degree 2 : [1] H. Sun, A. Gainaru, M. Shantharam and P. Raghavan; Selective Protection for
205 - ° . - n
eventually propagate through vector p [2] _ . _ 15 S . Sparse lterative Solvers to Reduce the Resilience Overhead,” 2020 IEEE 32nd
: 600 - . : : : : :
y Propag J P | §) § § 25 s *° ¢ International Symposium on Computer Architecture and High Performance Computing
°| e - =" %Izo- (SBAC-PAD), Porto, Portugal, 2020, pp. 141-148, doi:
O O |
. . . 0] A 5 7 10.1109/SBAC-PAD49847.2020.00029.
e The selective protection method strategically " 200- T . /
- : M z © - &Qonooo o0 ® 1 .000. ® "\\“ graes S~
focuses on monitoring the maximum k elements’ . : N 01 o [2] Manu Shantharam, Sowmyalatha Srinivasmurthy, and Padma Raghavan. 2012.

103 104 105 106 107 10° 101 102 103 10 10-1 100 101 3x10! 4 x 10! 6 x 101 102

ROW_2-NORM (log scale) ROW_2-NORM (log scale) ROW_2-NORM (log scale) ROW_2-NORM (log scale) Fault tolerant preconditioned conjugate gradient for sparse linear system solution. In
Proceedings of the 26th ACM international conference on Supercomputing (ICS '12).
Association for Computing Machinery, New York, NY, USA, 69-7/8.

https://doi.org/10.1145/2304576.2304588

10

of the row 2-norms of matrices, ensuring 1

0 A

accuracy in the CG algorithm. [1] Figure 6

Scatter plots representing the correlation between row 2-norm and slowdown.

NSF Grant: Award Abstract 2135310, Collaborative Research: SHF: Small: Learning Fault Tolerance at Scale

